
Operating Systems 2016/17
Assignment 3

Prof. Dr. Frank Bellosa
Dipl.-Inform. Marc Rittinghaus

Submission Deadline: Monday, November 14th, 2016 – 23:59

A new assignment will be published every week, right after the last one was due. It
must be completed before its submission deadline.

The assignments must be filled out online in ILIAS. Handwritten solutions are no
longer accepted. You will find the online version for each assignment in your tutorial’s
directory. P-Questions are programming assignments. Download the provided tem-
plate from ILIAS. Do not fiddle with the compiler flags. Submission instructions can
be found on the first assignment.

In this assignment you will get familiar with threads and different thread models as
well as learn how to implement a dynamic memory allocator.

T-Question 3.1: Threads and Thread Models

a. What is the difference between a PCB and a TCB? 1 T-pt

b. The lecture and tutorials introduced two fundamental types of threads, depending
on where the thread is implemented and where it executes. What are these two
types? Give a short explanation for each. 2 T-pt

c. Give two disadvantages of the many-to-one thread model. 1 T-pt

d. Explain the basic concept of a hybrid thread model. 2 T-pt

e. Why does a switch to a thread of a different process normally take longer than a
switch to a thread in the same process? 1 T-pt

1

P-Question 3.1: Simple Heap Allocator
Download the template p1 for this assignment from ILIAS. You may only modify
and upload the file malloc.c.

A process can request memory at runtime by employing a dynamic memory allo-
cation facility. You already used such a facility in the last assignment by calling
the user-space C heap allocator with malloc() and free(). In this programming
question you will implement your own heap allocator. Your heap will organize free
and allocated memory regions into blocks (see Figure 1).

Data

N
e

xt

Si
ze

Header (16 bytes)

Allocation Block (n * 16 bytes)

If block free:
points to the next

free block
If block allocated:

not used

Contains the size of the
block including header.
A multiple of 16 bytes.

This area holds the
user data.Return this pointer in

my_malloc() and
expect it as input in
my_free().

Potentially wasted
space due to alignment

Abbildung 1: Heap block

Each block starts with a header (16 bytes), which describes the block. The header
consists of a next pointer and a size field. The data region–the region which is
returned to the user–follows the header. Its length depends on the requested size,
but is always rounded up to a multiple of 16 bytes.

A heap must be able to quickly satisfy new memory requests. It is therefore import-
ant to quickly identify free blocks. Your heap will keep all free blocks in a linked-list,
connected by the next pointers and choose the first block, which is large enough.
When a block is allocated, it is removed from the free-list, when it is released, it
is inserted into the free-list. In any case, blocks can be iterated by going from one
block to the next using the size field. The heap allocator splits/merges blocks as
appropriate (see Figure 2).

(a) D (free)N S

NULL

_firstFreeBlock

(b) D (free)N S

NULL

_firstFreeBlock

D (free)N SDS DS DS

Abbildung 2: (a) Heap at the beginning. All memory is free. (b) Heap after some allo-
cations and frees.

2

a. To ease the design, the heap allocator manages memory only at the granularity of
16 bytes. Write a function that rounds a given integer up to the next larger multiple
of 16 (e.g., 6→ 16, 16→ 16, 17→ 32, etc.). 1 P-pt

uint64_t roundUp(uint64_t n);

b. Implement the my malloc() function that allocates memory from your heap. Do
not use any external allocator. Your implementation should satisfy the following
requirements: 4 P-pt

• Uses your roundUp() to round the requested size up to the next larger multiple
of 16.

• Searches the free-list to find the first free block of memory that is large enough
to satisfy the request.

• If the free-list is empty or there is no block that is large enough, returns NULL.

• Otherwise, removes the free block from the free-list and returns a pointer to
the beginning of the block’s data area.

• If the free block is larger than the requested size, splits it to create two blocks:
(1) One (at the lower address) with the requested size. This block is returned.
(2) One new free block, which holds the spare free space. Don’t forget to add
it to the free-list by updating the next pointer of the previous free block. Free
blocks that are only large enough to hold the header (i.e., 16 bytes) are valid
blocks with a zero-length data region.

Hints: Adding or removing blocks from the free-list may require updating the free-
list head pointer (firstFreeBlock), which points to the first free block. If the list
is empty, this pointer should be NULL. The last free block’s next pointer should al-
ways be NULL. Before you submit your solution, experiment with different allocation
patterns and print the heap layout with dumpAllocator().

void *my_malloc(uint64_t size);

c. Implement the my free() function that frees memory previously allocated with
my malloc(). Your implementation should satisfy the following requirements: 3 P-pt

• Considers my free(NULL); as valid and just returns.

• Otherwise, derives the allocation block from the supplied address.

• Inserts the block into the free-list at the correct position according to the
block’s address.

• If possible, merges the block with neighbor free blocks (before and after) to
form a larger free block.

All hints of the previous question apply.

void my_free(void *address);

3

P-Question 3.2: User-Level Threads

Download the template p2 for this assignment from ILIAS. You may only modify
and upload the file dispatcher.c. This question expects an x86-64 (64-bit) CPU
and an 64-bit operating system and tool chain. You can use computers from the
ATIS if necessary.

Threads are a fundamental abstraction of the CPU provided by the operating sys-
tem. In this question you will write your own user-level thread dispatcher that will
be able to create, start and switch between user-level threads.

a. Implement the yield() function that performs the switch from one user-level
thread to another. Your implementation should satisfy the following requirements: 3 P-pt

• Pushes the CPU registers rbp, rbx, and r12 - r15 to the current thread’s stack.
Note: By the calling convention, these registers are callee-saved, which means
that the function which modifies them, needs to save them. Since the switch
with yield() is voluntary, only these registers need to be saved. All other
registers are–because of the calling convention–saved (if in use) by the caller
of yield().

• Saves the current stack pointer (rsp) in the current thread control block (
threads[prevThread]).

• Switches to the stack of the next thread by writing the rsp register.

• Restores the previously pushed registers from the stack of the next thread.

Hints: To implement the necessary actions you need to write GCC inline assembler.
Use the assembler instructions pushq <register> and popq <register> to push/-
pop a register to/from the stack, and movq <src>, <dest> to perform register/re-
gister or register/memory data transfers. Complete each line of inline assembler
with \n\t. Example: pushq %%rax\n\t.

void yield();

b. Implement the startThread() function that initializes a new user-level thread and
prepares its stack to start execution in the user supplied main function after retur-
ning from yield(). When the thread exits its main function, it should automatically
execute parkThread(). 3 P-pt

Hints: Build the program with your implemented yield() function. Then call objdump
-Sd dispatcher and locate the assembler code you have added to yield(). You will
notice that the compiler added two more assembler instructions at the end of the
function:
40090a: c9 leaveq ; includes a popq %%ebp

40090b: c3 retq ; pops the return address and performs the jump

To build a fully functional stack for a new thread you also need to prepare the stack
to contain valid values for these instructions as well as a valid return address for
the thread’s main function.

int startThread(void (*func)(void));

Total:
7T-pt
14P-pt

4

